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A GENERAL SMALL-DEFLECTION THEORY FOR FLAT SANDWICH PLATES

"By CrarLEs LiBovE and S, B. BaTporr

SUMMARY

A small-deflection theory 18 developed for the elastic behavior
of orthotropic flat plates in which deflections due to shear are
taken into account. In this theory, which corers all types of
flat sandwich construction, a plate is characterized by seren
physical constants (five stiffnesses and two Poisson ratios) of
which six are independent. Both the energy expression end
the differential equations are developed. Boundary conditions
corresponding to simply supported, clamped, and elastically
restrained edges are considered.

INTRODUCTION

The advent of high-speed flight and the concurrent neces-
sity of maintaining aerodynamically smooth surfaces under
high stress have led to the increased study of sandwich-plate
construction as a possible substitute for sheet-stringer con-
struetion in airplane design. A sandwich plate consists
essentially of a relatively thick, low-density, low-stiffness
core bonded between two thin sheets of high-stiffness ma-
terial. Materials that have been considered for the core
include balsa wood, hard foam rubber, cellulose acetate,
resin-impregnated cloth fashioned into & honeycomb,
corrugated metal sheet, and even closely spaced:- stiffeners
of the conventional type. The face sheets may be of metal,
plywood, wood-pulp plastic, or some other type of high-
stiffness material.

Because of the low-stiffness core, the sandwich plate will,
in general, experience appreciable deflection due to shear.
Furthermore, because the face sheets or core (or both) may
have orthotropic stretching properties, the sandwich plate
will in general be orthotropie in its flexural properties. As
a result, ordinary plate theory, which is based on the assump-
tions that the plate is isotropie and that deflections due to
shear may be neglected, cannot be used to determine the
stresses, deflections, or buckling loads of sandwich plates.

A general small-deflection theory for flat orthotropic plates
is therefore developed in which deflections due to shear are
taken into account. The theory is applicable to any type
of orthotropic or isotropic sandwich that behaves essentially
as a plate, provided certain physical constants are known.
These physical constants (two flexural stiffnesses, two shear
stiffnesses, a twisting stiffness, and two Poisson ratios defined
in terms of curvatures) serve to describe the plate deforma-
tions associated with simple loading conditions and may be
regarded as fundamental properties of the plate. For
simpler types of sandwich construction the physical constants
can be evaluated theoretically from the geometry and physi-
cal properties of the materials used. For more complicated
types of construetion, these constants ean be evaluated by
means of simple tests on samples of the assembled sandwich,

as described in appendix A. A reciprocal relationship

between the flexural stiffnesses and Poisson ratios is derived |

in appendix B.
As is the case with ordinary plate theory, the orthotropic
plate theory consists of two parts, each complete in itself.

These parts are a set of six differential equations, three of

which express the equilibrium of an infinitesimal plate ele-

ment and three of which relate the curvatures and twist of

the element to the forces and moments acting upon it, and

an expression for the total potential energy of the system
comprising the plate and the forces acting upon it. The six
differential equations involve six variables. However, it is
shown how these simultaneous equations can be reduced to
a single equation of sixth order involving any one of the
variables alone. In appendix C the consistency between the
differential equations and the potential-energy expression is
shown by a variational method.

The consideration of deflections due to shear makes neces-
sary the specification of one more boundary condition than
in ordinary plate theory. This fact was first appreciated by
Reissner in reference 1. Because of some arbitrariness in the
choice of the additional boundary condition, two types of
simple support and two types of clamped edges are possible.
Furthermore, three boundary conditions can be specified
for a free edge, in contrast to ordinary plate theory. Bound-
ary conditions more genersl than freedom, simple support,
or clamping are considered in appendix C.

A number of investigations related to the problem of ortho-
tropic- or isotropic-sandwich-plate analysis have been made
previously. Theories for the bending of orthotropic plates
due to lateral loads and buckling due to edge loads, neglecting
deflections due to shear, are given in references 2, 3, and 4
and pages 380-384 of reference 5. The effect of shear on
the bending due to lateral load of homogeneous isotropic
plates and isotropic sandwich plates is considered in refer-
ence 6. The effect of shear on the bending due to uniform
lateral Ioad and buckling due to edge compression of simply
supported isotropic sandwich plates with homogeneous cores
is considered in investigations by Hopkins and Pearson and
by Leggett and Hopkins. A rough method of taking into
account deflections due to shear in the buckling of simply
supported orthotropic sandwich plates is used in reference 7.

The present theory may be regarded as a natural exten-
sion to plates of the approximate theory used in pages 170-
174 of reference 8 to take into account deflections due to
shear in a beam. The theory of this paper is more general
than the aforementioned theories in that it applies to ortho-
tropic or isotropic sandwich plates with homogeneous or
nonhomogeneous cores and with arbitrary boundary condi-
tions, it presents both the differential equations and the
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energy expression for the plate, and it is applicable to prob-
lems that involve lateral as well as edge loads.The differential
equations of the present theory are reduced to special forms
in order that they may be compared with the. equatlons
obtained in references 5 and 6.

The detailed development of the theory comprises most
of the following sections and the appendixes. The main
parts of the theory are summarized briefly in  section entitled
“Recapitulation of Principal Results.”

SYMBOLS

orthogonal coordinates; z measured normal to

2,9, 2
plane of plate and z and y parallel to pr mc1pa1
axes of flexural symmetry, inches

w deflection of middle surface of plate, measured
in z-direction, inches _ _

g intensity of Ia,tera,l loading, pounds per square
inch

Q- intensity of internal shear acting in z-direction

in & cross section originally parallel to yz-plane,
pounds per inch
e, intensity of internal shear actmg in z-direction in
8 cross section originally parallel to zz-plane,
pounds per inch
intensity of internal bending moment acting
upon & cross section _griginally parallel to
yz-plane, inch-pounds per inch
intensity of internel bending moment acting
upon & cross section originally parallel to
zz-plane, inch-pounds per inch
intensity of internal twisting moment acting in a
cross section originally parallel to yz-plane or
xz-plane, inch-pounds per inch

ST

M.

q dx dy

pa
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N, intensity of middle-plane tensile foree parallel to
2z-plane, pounds per inch
N, intensity of middle-plane tensile force parallel to
yz-plane, pounds per inch
Ny " intensity of middle-plane shearing force parallel
to yz-plane and zz-plane, pounds per inch
D; D,” " flexural stiffnesses of plate with anticlastic
bending unrestrained, inch-pounds
(Bendmg moment per inch)
Curvature
D, " twisting stifiness of plate, inch-pounds
Twisting moment per inch
Twist )
D" " 777 flexural stiffiness of ordinary plate, inch-pounds
Dq,,Do,"  shear stiffnesses of plate, pounds per inch
Bz My Poisson ratios for plale, defined in ter mg of
_ curvatures
u _~ Poisson ratio for ordinary plate
Yer Yy shear-strain angles due to shears @, and @,

respectively, radians
h thickness of plate, inches

a,b Iength and width, respectively, of rectangular
plate, inches

14 total potential energy of system, inch~pounds

Vi strain energy of bending of plate, inch-pounds

2 .. potential energy of external loads, inch-pounds

U, v displacements in z-direction and y-dircction,

respectively, of a point in middle surface of
: plate, inches
[P, [M],[N], [P] differential operalors
' SIGN CONVENTION

The sign convention and notation used in the present
paper are, wherever convenient, the same as those used by
Timoshenko in reference 5.

/

/

dy

My dz My, dy \Mx dy
// Ny dy
K\\ Mxy dx /
h I LY > N N
| Mgydx [y
/ Ox dy
Ny dax Oy dx

F1ourg 1.—Forces and moments acting on dlfferentlal element dx dy.



A GENERAL SMALL-DEFLECTION THEORY FOR FLAT SANDWICH PLATES 141

The x-, y-, and z-axes of an orthogonal coordinate system
are oriented so that the zy-plane coincides with the undis-
torted middle plane of the plate. Deflections w are measured
normal to the zy-plane and are positive in the positive direc-
tion of the z-axis. The lateral load ¢ is also positive in the
direction of the z-axis.

The internal shears @, and @,, moments Af,, 4f,, and Af,,,
and middle-plane forces N;, Ny, and N, are shown in figure 1
acting in their positive directions upon an infinitesimal
element of length dx and width dy cut from the unloaded
plate by planes parallel to the zz- and yz-planes. Only the
forces and moments acting on two adjacent faces of the
element are shown. The forces and moments on the oppo-
site faces differ from those on the faces shown only by infini-
tesimal amounts. The directions in which they act, howerver,
are opposite (for example, moment Af, dy on the face shown
is counterclockwise; moment A, dy on the opposite face
would be shown acting clockwise). The twisting moment
and middle-plane shearing force acting on any cross section
are known, from equilibrium considerations, to be equal to
the twisting moment and middle-plane shearing force acting
on a cross section af right angles. The symbols 34,, and N,,
therefore appear in both of the faces shown in figure 1.

For convenience, in this report the z-direction is sometimes
referred to as the vertical direction and planes parallel to
the ry-plane are sometimes referred to as horizontal planes.

PHYSICAL CONSTANTS

The physical properties of the plate are described by means
of seven constants: the flexural stiffnesses D, and D,, the twist-
ing stiffness D,,, the transverse shear stiffnesses Do, and
Da,, and the Poisson ratios g, and p,. Definitions of these
constants are obtained by considering the distortions of the
differential element of figure 1 under simple loading conditions.

Let all forces and moments acting on the element be zero,
except for the moments 3£, acting on two opposite faces. The

effect of A1, is to produce 2 primary curvature %’ in the
middle surface of the element and also a secondary curvature
$54 which is a Poisson effect. Then D, is defined as the

negative of the ratio of moment to primary curvature or

= —as,w (1)

when only M, is acting, and p. is defined as the negative of
the ratio of Poisson curvature to primary curvature or

Q*w o '
T '

when only JI is acting. No other distortions are assumed

but a;f a.nd T When AL acts. The minus signs are intro-

duced in order to make D, and g, essentially positive
quantities.

Similarly, D, and g, are defined as

M, _

o™w 3

o :

o'w _
ox?

=g - @

s

D=—

when only 3f, is acting.

If, now, all of the forces and moments are equal to zero
except Af;, acting on a11 four faces, the only distortion

produced is a twist a by’ and D,, is defined as the ratio of

twisting moment to twist or

M,
D, =35 (5

dxdy
when only 1{,, is acting.

The transverse shear stiffness Dy_is defined by letting only
the shears @ act on opposite faces of the element (except for
an infinitesimal moment of magnitude @, dy dz required for
equilibrium). The distortion is assumed for the moment
to be essentially a sliding of one face of the element with
respect to the opposite face, both faces remaining plane. As
a result of this sliding, the two faces parallel to the zz-plane
are distorted from their rectangular shape into paraIIelbgrama
by an amount 7., which is the shear angle measured in the

zz-plane. The shear stiffness Dg, is defined as the ratio of
shear to shear angle or _
_9
Do,—,,z (6)

when only @, is acting. If the sides of the element are kept
parallel to the z-axis, the slope of the middle surface is

Q-

_..___fY—
oz Do,

when only €. is acting.

In a similar manner, the shear stiffness Dg, is defined as
the ratio of the shear on the faces parallel to the zz-plane to
the shear angle measured in the yz-plane when only @, is
acting or .

Y '
Do=3F = = - @)
when only @, is acting. If all sides of the element are kept
parallel to the z-axis, the slope produced is

when only @, is acting.

The constants just discussed serve to define the orthotropic
sandwich plate; they can be evaluated theoretically if the
properties of the component parts of the sandwich are known
and if the plate is of simple construction. In any event, the
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constants can be determined experimentally by means of
bending tests and twisting tests on beams and panels of the
same sandwich construction as the plate. A description of
the tests required is given in appendix A.

Although seven physical constants_have been discussed,
they need not all be independently determined for if any three
of the four constants D,, I, u,, and u, are known the fourth
can be evaluated from the relationship

peDy= D, - ®

This relationship, based on a generalization of Maxwell’s.

reciprocal law, is derived in appendix B,
The shear stiffnesses Dg, and Dg, merit some additional
discussion. The distortion due to shear was assumed to be

8 sliding of the cross sections over each other, the cross sec-

tions remaining plane and the shear strains remaining con-
stant for the entire thickness of the plate and equal to the
shear angle v, or v,. Actually, if the plate is continuous
enough for cross sections to exist at all, under shear the cross
sections generally tend to warp out of their plane condition
(p. 170 of reference 8); this warping makes the shear angle,
as defined for equations (6) and (7), meaningless. The shear
strain varies with depth and an average shear strain will have
to be used as the effective shear angle v, or v, for purposes
of defining effective shear stiffiness Do_or Dq,. If the exper-
imental method is used.(see-appendix A), this difficulty is
not encountered because, instead of a shear angle, curvatures
are measured, and the stiffnesses obtained are automaticslly
the effective stiffnesses. _

Despite the general tendency of cross sections under shear
to warp, the assumption that they remain plane (t,hough not

normal to the middle surface) can be shown fo. be almost.

correct for those sandwiches in which the stiffness of the
core is very small compared with the stiffness of the faces
(for example, Metalite, honeycomb). For such sandwiches
the shear stiffnesses Dy, and Do, can be readily calculated,
because the faces may be assumed to take all the direct bend-
ing stress and the vertical shear may therefore be assumed
uniformly distributed in the core. The shear angles v, and
v, will then be constant throughout the core.

For those sandwiches in which cross sections under shear
may not be assumed to remain plane, the tendency of these
cross sections to warp iniroduces a further. complication
which can, however, be resolved by means of a justifiable
simplifying assumption. This complication is due to the
fect that if the cross-sectional warping is partially or com-
pletely prevented the effect will be to increase. the shear
stiffness Dg_or Dg,. The shear stiffnesses, thus, depend not
only on the properties of the plate materials but also on the
degree of restraint against cross-sectional warping. For the
purpose of the present theory the shear stiffnesses Do, and
D, are assumed to be constant throughout the plate and
have the values they would have if cross sections were allowed
to warp freely. The error caused by this assumption will
be mainly local in character, being most pronounced.in the
region of a concentrated lateral Joad, where a sudden change
in the shear tends to produce & sudden change in the degree
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of warping which is prevented by continuity of the plate.
The error will probably be negligible in the case of distributled
loads, for which there are only gradual changes in the shear.
A discussion of this errar in connection with beams is con-
tained in pages 173-174 of reference 8 and in reference 9.

DIFFERENTIAL EQUATIONS FOR PLATE
DISTORTION EQUATIONS

. .
‘Equations can be derived relating the curvatures %x“,’ and

ofw

7 and the twist aa > at any point in the plate Lo the inter-

nal shears and moments acting at that point.
2

Equatmn for the curvatureg 3-

—-An explcsswn can bc

obtainé;c_l_ for the total curvature g—?, in the az-direction by

adding tbgether the contributions made by cach of the shears
and moments acting separately. From equation (1} the
curvature contributed by Af, is found to be

_ ML
-
Equations (3) and (4) can be solved for the contribution {o_
2

% by 3, which is

- M,

By D
Finally, the equation following equation (6) indicates that

Q.

oy produces a curvature in the middle

the existance of

plane equal to

The moment M., and the ghear @, make no contribution to

%g Addition of the three component curvatures gives -

Pt ,,‘}_;'+D‘;%% - (92)

. - )
Equation for the curvature %f.—SimiIar considerations

give the curvature in the y-direction as -
£, 1 0
Cm M, M
¥

Equation for the twist ab 5 —An expression for the twist

2
a%—ay— is obtained by first writing an expression for the twist-
ing moment Af,, in terms of the distortions of the clement
dz dy.

Let the middle surface of the element be distorted go that

2
it acqiiires a fwist ab 57 Further assume that cach line

element normal to this middle surface before its distortion (a)
first rotates so as to remain normal to it after its distortion,
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(b) then rotates through an angle 4. in a plane parallel to
the zz-plane, and (c) then rotates through an angle v, ina
plane parallel to the yz-plane. (Rotations (b) and (c) pto-
duce parallelogram-type distortions of cross sections and are
therefore denoted as shear angles v, and 7,.)

Distortion of the element as a result of rotations of type
(a) is shown in figure 2 (a). Distortion of the element due
to rotations of type (b) is shown in figure 2 (b) on the assump-
tion that . is zero at the center of the element and is chang-
ing uniformly in the y-direction. Distortion of the element
due to rotation of type (c) is shown in figure 2 (c) on the
assumption that v, is zero at the center of the element and
changing uniformly in the z-direction. The magnitudes of
the displacements shown in figure 2 are obtained by consider-
ations of geometry, the details of which are not given.

The twisting moment A, acting on all four cross sections
of the differential element is proportional to the shear strain
of the upper and lower surfaces, because this type of strain,
throughout the thickness of the element, produces the hori-
zontal shearing couples that make up 3f,,. By superposi-
tion of the three distortions shown in figure 2, the shear
strain in the upper (or lower) surface can be written as

ha'Yz ha’Yﬂ
2% 272z

h Ow b O'w
2 oxoy ' 2 Oxdy

or
(g3 o5 o)

¥
.___.«qcper' swioce —HUoper surfoce.,
. JM«obVe swrfoce - /Mfdde sur'face\ \
s o ALower surfoce A A ower surfoce, "'-.L \
" ‘-‘.: -'. ) \ \ K
BAE
or,
Lcid's
4 ox &*
dx dx dx
‘ﬁd%cdy Th Orx
(2) 4 axdy (k) Tl (c)

(&) Distortion due to E—”

all line elements remain-
ing normal to middle
surlace,

(b) Distartion dre to 9;7’- () Distortion due to 32+

F10URR 2.—Distortions of element ¢r dy In twisting.

and theretore,

ALy ech

o'w 137: 1oy,
drdy 2 dy Zb.r)

Substitution for v, and v, in terms of @, and @, (equa.tmns
(6) and (7)) gives oo
11 2@, o

1109, 1 1 0¢
276@/ 2DQ' ox

M=k <a a

where ' is a proportionality constant absorbing k. WWhen
Q. and @, are both set equal to zero, the above equation
must reduce to equation (5), because only 1f,, is acting on
the differential element. The constant 4’ is therefore iden-
tified as Dy, and the equation for twisting moment becomes

w 1.1 02Q, 1 1 bQ,)

Ma=Da\ 3759 ~2 D, 2y 2 Dq, 02

Solution for % yields the following equation analogous to

the equations already obtained for b
(9¢)

EQUILIBRIUM EQUATIONS

The element dx dy must be in equilibrium under all the
forces and moments acting upon it. This condition implies
that certain relationships must exist among these forces and
moments. These relationships can be derived by considering
the changes that occur in the forces and moments from one
face to the opposite and writing the equations of equilibrium
for the element. The equations are the same as in ordinary
plate theory. For equilibrium of forces in the z- and
y-directions, these equatlons are obtained from equations
(196) of reference 5:

o +°§7y" 0 (108)
ab];; oLy _ | (tob)

The equation for equilibrium of vertical forces is given at the
top of page 305 of reference 5 as

AL L, | O ot
e 2y T o (9+N= Ta+w, ay2+2N" 70y

(11a)
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And the equations for equilibrium of moments about the y-
and z-axes are obtamed from equatlons (188) and (189) of
reference 5 as ' .

oMy, , OM,
Qu=—23er 1 O (11h)
Q=23 100 (110

(Equations (11) are also derived in appendix C by minimiza-
tion of the potential energy.) Note that the left-hand side
of equation (11a) can, by virtue of equations (11b} and (11c),
be simplified to o
aQ: aQu _
D@/

" If, as is customary in small-deflection theory, the middle-

- plane stresses NV, N,, and N, are assumed to be unchanged
in the course of the plate’s deflection and equal ta their initial
values before application of lateral load, then equations (10)
are automstically satisfied and equations (9) and (11) con-
stitute the six fundamental differential equations that deter-
mine the forces, moments, ahd distortions throughout the
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orthotropic plate. They can be used in their present form or
in the alternate-form obtained in the following section.
L]

ALTERNATE FORM OF THE DIFFERENTIAL EQUATIONS

The fundamental differential equations (9} and (11) can be
transformed so as to separate variables. Equations (9) are
first solved for M, Af,, and M, to obtain

B B ) 3 )] e
”; 1— #:uy[ay(bw QF)_I-”’ax(aw - ](12b)

sombon BG83 G- 8)]

With the left-hand side of equation (1la) simpliﬁed lo
§Qz va
ba:

and the above expressions for 2f;, M,, and M,,

substituted into equations (11b) and (llc), equations (11)
become, after some regrouping of terms,

(0 it 2 s ) 0 (3) @4+(5) 0= -

1D,, o

ot D,
[P s 1=

D yhz -

1D, o Doy,

o g o) [2D;‘ ay=+mm; 1] et 3 72 5505 T T ke Da, oy | =

ot D, 1D, &
[~ Do sy 17 (e g o) |+ 2 D sy = D 5

1D,, o
Ot 352 st ey o] %=

These three equations can be solved to obtain & differential equation for w alone in terms of ¢, an equation for @, alone in
terms of ¢, and an equation for @, alone in terms of ¢. This separation is accomplished most easily, for the case in which
N., N,, and N,, are constant throughout the plate, by treating the three differential equations as though they were alge-
braic equations and solving for w, €, and @, by means of determinants. The terms in the determinants are the differential-
operator coefficients of w, @,, and @, appearing in the three equations. In expanding these determinants, the rule for multi-
plication of linear operators must be used. For example,

2 o
32 dxdy oxdy’

As a result of such a solution, the following differential equations are obtained for w, €., and @,:

[Dlw=—[M]g (132)
[DiQ.:=—[Nlg ~ (13b)
[D1Q,=—[Plg (13c)
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where [D], [AM], [V], and [P] are differential operators defined as

D.D,—

1
D:yD:Fr—'2' stDpPr.)
v

1D.,D,
b:c°+(2 .qu + 'DQ

1 1
§ D:UD::F:_E D:yDyP-z
Do, Dq,

— D,
[1 Dn(l !-‘-d’-v) + J (_ZV‘= a.t*_l_N” a?by2+2]\'s# azsby

0%,

T

ot ot 1
—D. ai_[zpn(l _P-z"-y) ‘["Dzl-‘v'l'Dr#r] W r 7"'2

) (N . b:t‘by’+N v az*ay4+2‘\ 2 a;-*aw)*‘

1
b.D,—5

2 D..D, 28

Syt T

..]_

+(%

D:y-DzF-y_% D:rDvI-‘:
Dy,

D,
D.,D - ) N
197) ( ’b:c“+ "ax*ayf" Ny bz‘by

1 D:vDV (N, a—rg—-l‘Nv aya'l"" i axby‘)

sk ]Mnﬂﬂﬂ) B, | sty s gt W )+

Ll

o? O
(1 — papty) (N, a——x,—l-N, a—y,-r2Nn a_rb—y) (i4a)
1 1
Af1— ”D: o D;Dﬂ—E DzyDzﬂy—'E D:yDrﬂ-z ot +1 D”D ot 1 D,,(l ,u._,;!,) a2 _
M=% DDy, 3 T Ds.Do, o T2 D, Do, o |2 D, Do” o
2
I:l Dzw(l #:.un) _I_D-Daj %_I_ ¢! _—,u:p.,) (14b)
1 1
D, D,~= DyDepy—< DoyDyp
1D..D. o v—g DalDay—3 Dalir=} s 1p,.D, o o o
[N]=§ _D__ azﬁ'i‘( DQ, ) azsayz"‘z _DO a.“.'by‘ D, _x!_[Dzv(l_P-zﬂy) +D:p} W (140)
.D D ;pDz# — :B‘D 1227
1D,D, o ] v o8 1D.D, 2° o* foif
[P] ) D:: ax4ay+( DQ:: ) axzays 9 qur ays ¥ W"[D:y(l—'#zﬂy) +DIP-.r] azz'—by (14d)

Equations (12) and (13) taken together constitute an alter-
nate set of differential equations that the plate must satisfy.

COMPARISONS WITH PREVIOUS SOLUTIONS

Homogeneous isotropic plates, deflections due to shear
neglected.—The usual fourth-order equation for homogene-
ous isotropic plates, in which deflections due to shear are
neglected, can be obtained from equation (13a) by letting

Do,=Do=
o=y =R
D.=D,=D(1—
Doyy=D(1—p)

With these substitutions made, equation (182) becomes, after
some transposition of terms,

W o*w - OMw
x4+ bz’by’+by“ D( +N: arf“N"W“NﬂazTy)

which is the same as equation (197) of reference 5. -
Isotropic sandwich plates, deflections due to shear

considered.—The differential equations for isotropic sandwich

plates are obtained in reference 6 by use of Castigliano’s
theorem of least work for the case in which the middle-
surface forces N,, N,, and N,, are zero. The equilibrium
differential equations of reference 6 are equivalent to equa-
tions (11) of the present paper. Equations (10a), (10d),
(10e), and (10f) of reference 6 can be solved simultaneously
to obtain the following equations for the curvatures and
twist in terms of the vertical shears and moments (the
notation is that of reference 6):

ow_ M 19V, 1 (oV.. 2V,
== D(l—v’)+D(1 ATC % ?:" 2z Ty
duw__ M, . M, 12V, 13V, 2V,
= Di—" T Da—H TC, oy Cu\oz T oy
o L1 (3T,
dxdy D(1 v 2C,\dy " o
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The symbols H, V7, and 17 in the above equations correspond

to —M,,, Q., and @,, respectively, in the natation of the
present paper. The quantities D, C,, C,, and » are physical
constants for the plate. The above equations are seen to be
identical in form to equations (9). of the present paper (if Dy,

is set equal to Dy for isotropy in the - and y-directions)

except for the additional term v bg: ovy

in each curva-

ture equation. This term arises from the consideration of
stresses and strains in the vertical direction, which were neg-
lected in the present paper on the ground that they have a
negligible effect on the over-all flexural behavior of the plate
and are only important in the neighborhood of concentrated
loads. Setting C, equal to infinity makes the equations
derived from reference 6 completely identical in form to equa-
tions (9) of the present paper. Itshould be mentioned that
the quantity w as used in reference 6 is not the deflection of
the middle surface buf “a weighted average across the thick-
ness of the deflections of all pomts of the pIate which lieon a
normal to the middle surface.”

BOUNDARY CONDITIONS

The boundary conditions are first discussed for those types
of edge support most commonly assumed in practice:. namely,
complete freedom, simple support, and clamping. (More
general kinds of support are considered in appendix C.)
These supports are characterized by the condition that no
work is done by the moments and vertical forces at the
boundary. A boundary parallel to the y-axis is considered;
the conditions for a boundary pa,ra,llel to the z-axis can be
obtained by replacing 2 by y and vice versa, except in the
subscripts of Af,, and N,,.

Free edge.—The boundary conditions for a free unloaded
edge parallel to the y-axis express the conditions of ~zero
bending moments, zero twisting moment, and zero vertical
force, or

M, =0 ._ (152)
M,,=0 (15b)
Qr =0 (15(‘.)

If-the free edge carries load, the middle-plane forces IV, and

N, will not in general be zero and the boundarv condition
of zero net vertical force becomes

Qz+ z- ax +er ay _'0 (150')

instead of equation (15¢).

Simply supported edge.—The principal boundary con-
ditions for & simply supported edge parsllel to the y-axis are
w=0 and A,=0. If to these two conditions is added the
restriction that there is. no y-displacement of points in
the boundary, then the shear angle v, is zero and therefore

gl=0. If, on the other hand, the support at the boundary

X

is applied only to the middle surface at the boundary and no
horizantal forces are applied to prevent the y-displacement of
other points in the boundary, then Af,,, which is made up of
such horizontal forces, must be zero. Two different types of
simple support thus emerge. For simple support in which all
points in the boundary are prevented from moving parallel
to the edge, the conditions are

w=0 (161a)

A=0 (1¢h)

% =0 (16c)
L

For simple support in which all points in the boundary,
except those in the middle surface, are free to move perallel
to the edge, the conditions are

w=0 (17a)
M.=0 (17h)
i Izu= 0 (170)

Of the fiwo types of simple support, the first (equations 16)}

is morelikely to.occur in practice.

Clamped edge.—The principal conditions characterizing
a clamped edge parallel to the y-axis are zero deflection of the
middle surface and zero rotation of ihe cross sections making
up the boundary (that is, the boundary plane remains parallel
to the z-axis). The requirement of zero deflection is satisfied
by letting w=0 at the boundary. The requirement that
boundary cross sections remain parallel to the z-axis is satis-

fied by _lctting = _Q_, as the equation following equation (6)

indicates. (INote that_lf deflections due to shear are

neglected by letting Dg = o, then the last. boundary condi-
tion reduces to g—f=0, whjcﬁ is familiar in ordinary plale
theory.) Just as in the case of simple support, the third
boundary condition is either —DQ-"— =0 or AL,,=0 depending on

whether or not points in the boundary (other than those
points in the middle surface) are prevenied from moving
parallel to the edge. Thus, two types of clamping arc
possible. For a clamped edge in which the points in the
boundary of the plate are prevented from moving parallel
to the edge, the conditions are

w=0 (18a)
=0 (18b)
DQf=o (18¢)

For a clamped edge in which the points in the boundary
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(except those in the middle surface) are free to move parallel
to the edge, the conditions are

w=0 (192)
w @ .
‘85_1)0:—0 - . (lgb)

M.,=0 (19¢)

The latter type of clamping is very unlikely to occur in prac-
tice, because any practical type of restraint that keeps the
boundary from rotating has to be applied over an appreciable
part of the thickness of the edge and therefore prevents most
points in the boundary from moving freely parallel to the
edge.

The boundary conditions just discussed, as well as bound-
ary conditions corresponding to more general types of
support, are derived in appendix C by a variational method.

POTENTIAL-ENERGY EXPRESSION .
STRAIN ENERGY

An expression can be obtained for the strain energy 17
produced by the moments Af,, Af,, and M., and the shears
Q. and @, by considering the work done by these moments
and shears in distorting the differential element of figure 1.

The work of the moments A1, dy is equal to -21- A, dy times

the counterclockwise rotation of the right-hand face with
respect to the left-hand face of the element. This rotation
is made up of two parts: the rotation caused by the moment
Af, itself and the Poisson rotation caused by the moment 17,.

The sum of these two parts is ( -D‘—[—p, D )dx (Note

that although the term Q”

curvature of the middle surface, this term represents a rate
of change of sliding rather than a rate of change of rotation
and therefore makes no contribution to the rotation of one
face with respect to the opposite.) The work of the moments
M, is therefore

~Laray (—D—Jm ‘_f:) dn

makes 8 contribution to the

or .

1 /312 ALM

3(p5 w5, e 0
Similarly, the work of the moments 1f, is

1 /M2 MM,

! (']7;_ ) drdy @1)

The work of those moments Af;, acting in the faces parallel

to the xz-plane is equal to % B, dx times, the clockyise rota-

tion of the nearer face (as seen in fig. 1) with respect to the
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farther face. This rotation is made up of the two parts
shown in figures 2(a) and 2(b) and is equal to
AR
ao:by dy"" a,y dy
or, replacing v: by its equivalent in terms of ¢, (equation (6)),

1 an (l
brby T dy

The work of the moments 1f,, parallel to the zz-plane is ... .

therefore

I&I bw

Similarly, the work of those moments 3/, parallel to the
yz-plane is
1 3¢,

IL{’” IT ox

(bxby drdy

The total work of the moments 31,, is, by addmg the last

two Q‘CPI‘eSSIOD.S

1102Q 11 29,
2D, 3y 2D, b.r)d dy

Ay (b:cby

The factor in parentheses is simply ﬁ—; from the equation
¥

preceding equation (9¢), and the work of the moments JI,!_

therefore becomes R

P avay

£ 4

(22)

The work of the shears Q:is %Q, dy times the downward

distance through which the right-hand face slides with
respect to the left-hand face.

work is therefore% Q.y- dz dy. Replacement of v, by its

equivalent in terms of @, gives

1Q.2
5 D:, dx dy (23)
for the work of the shears Q,. Similarly, the work of the
shears @, is
102
3 dx dy (24)
()

-

Integratlon of the energy expressions (20) to (24) over the

entire plate gives, as the total strain energy due to bending
and shear,

1 My
f f B (f+i) 34 o+
o Q, _ ]
23—,, T D, | B (25)

This distance is v, dr and’ _'. o
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Elimination of M., M,, and M., by use of equations (12) transforms the strain-energy cxpression (25) into

ves) Jimmlm G-t [ m G- ))& G- )+
bRl U S pl e el @

In addition to the strain energy of bending and shear, there is the energy of stretching of the middle surface produced
by the forces N;, N, and N,,. In small-deflection theory, these forces are assumed to remain constant during lateral deflec-
tion. The strain energy of middle-surface stretching is therefore a constant independent of the lateral deflection. ‘This
energy does not affect any solution and may be omitted from consideration.

POTENTIAL ENERGY OF EXTERNAL FORCES

The potential energy acquired by the external forces in the course of the lateral deflection of the plate is independent
of the internal construction details of the plate and depends only on the displacements of the middle surface. 'The potential-
energy expression for the orthotropic sandwich plate is therefore the same as for the ordinary homogeneous isot-ropic plate; that
part of the expression due to the forces N,, N,, and N,, at the boundaries is given by the negative of expression (201) of
reference 5. If to this part is added the potentlal energy acqu1red by the lateral Ioads, the resultmg expression for the potential

energy of the external forces is
f [[~2e0+n.(G2)+n, ( +2N. 52 59 |dzdy (21)

Equation (27) applies only when the reactions do no work and therefore acquire no potential energy in the course of the
plate’s deflection. The most commonly assumed boundaries satisfying this condition are free, simply supported, and clamped
edges. The potential-energy expression for plates with more general boundary conditions must include terms corresponding
to the work of the reaction forces. This more general case is considered in appondlx C.

In this section equation (27) has been established by means of physical reasoning. A more rigorous derivation of equa-
tion (27) for the special case of a rectangular plate is given in appendix D.

POTENTIAL ENERGY OF SYSTEM

The total potential energy V of the system comprising the plate and the forces acting on it is the sum of the strain energy
V1 and the potentitel energy of the external forces V; or, by addition of equations (26) and (27),

V_—f f {l_ﬂz#v [395 %D ):I Dzﬂitﬁ:#z [bx dx qu)] [by( EQ'QLV)]'F
——y I:by gz) Da,,)] + [ba: g;/o DQ;) 3z qu)] +p5.t D% o } dr dy+

1ff[—2W+N @:) + N, (bw) +2N,, 3z by dx dy | | (28)

The above expression applies when the boundary reactions do no work and therefore acquire no potential energy in the
course of the plate’s deflection. This equatmn is therefore applicable when the edges of the plate are free, simply supported,
or clamped. The potential-energy expression for a plate with more general boundary conditions is given in appendix C.




A GENERAL SMAUL-DEFLECTION THEORY FOR FLAT SANDWICH PLATES

RECAPITULATION OF PRINCIPAL RESULTS

1. The physical properties needed for smali-deflection
analysis of an orthotropic plate in which deflections due to
transverse shear are to be considered are the flexural stifi-
nesses D, and D,, the corresponding Poisson ratios p; and
uy defined in ferms of curvatures, the twisting stiffness I,
and the trensverse shear stiffinesses Dy, and D,,. These
constants can be evaluated theoretically or by tests on
samples of the plate as described in appendix A. Four of
these constants are related by the rec:procal relatlonsh.lp
p,D =, D, derived in appendix B.

. The differential equations relating the deflections w,

the lateral load ¢, and the internal forces and moments IV,
N,, N.,, Q., @y, 3L, M,, and 31, are

dw M., M, 1 0@
@ "D, tm D, D, o

>w M, oy 1 2Q,
ot k=D, D_ oy
dw M, 1 12Q , 1 1 2§,

3y D., 12 Dg, oy 72D, 0x

relating distortions to distorting moments and forces, and

2Q. , 2Q >w
o Toy — <g+N= af"‘]"a 72N o 5z
Qo ey OB,
T Ty ok
e aM,y _I_ag;

for equilibrium.

3. The first three equations can be solved for 1f,, Af,, and
AL, to obtain

‘”F‘m[a o)ty ()]
My==— —#:#y ay gﬁ_;gf;)ﬂ“a DQ%‘)]

Mo=3Du| (gﬁ;—gf)%% (gf“'Da,)]

Substitution of these expressions into the last three equations
and solution of the resulting equations by means of opera-
tional determinants give the following differential equations
with variables separated, for the case in which N,, W,, and
N, are constant throughout the plate:

[Dlw=—[M]q
[D] Q:= - [N]q il
[D1Q,=—1Plq
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where [D), [31], [V], and [P] are differential operators defined
by equations (14).

4, Three types of support commonly assumed at the
boundaries of a plate are no support .(free edge), simple
support, and clamping. These types of support can be

described in terms of deﬂectmn, shears, and moments for an

edge parallel to the y-axis as follows:
For a free edge,
AM,=0

- M,=0
Qz+ :ax'l"]\‘zyay

For a simply supported edge at which the support is applied
over the entire thickness,
w=0

M.=0

<
qu

For a simply supported edge at which the support is applied

only to the middle surface,
w=0
M.=0
M,,=0

For a clamped edge at wluch the support is applied over the
entire thickness,

For a clamped edge at which the support is applied only to
the middle surface (a type of support very unlikely to be
met in practice),

The conditions for an edge parallel to the z-axis can be
written by replacing z by ¥ and vice versa, except in the
subscripts of Af,, and N,,.

Boundary conditions can also be written for more general
types of support. (See appendix C.)
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5. The potential energy of a plate in which the middle-
surface forces are assumed to remain unchanged in the
course of the plate’s deflection and for which the moments
and vertical forces at the boundaries do no work is

V_Ifj‘{l—#zm I:a-'ﬂ %Q;: gg,)]z—l_
et G- G-
%U‘Z%,,)] +5 [5G %)Jf

1—#:#»[59
):I +Da, , dxdy+2ff|: 2grw+
ow oW

( )+N 3oy +2N. 5o 5o |ty
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The most important types of boundary to which this expres-
sion applies are free, simply supported or clamped. For
more general types of support, in which the boundary reae-
tions do work in the course of the plate’s deflcetion, the
potential-energy expression must be extended to include
terms representing the potential cnergy of the reactions.

The .calculus of variations can be used to show that in
order for the potential energy to be a minimum the differ-
ential equations of equilibrium and the boundary conditions
must be satisfied. (See appendix C.)

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
Narronar Apvisory COMMITTEE FOR AERONAUTICS,
Laxcrey Fivip, Va., September 80, 1847,

APPENDIX A

TESTS TO DETERMINE PHYSICAL CONSTANTS

The purpose of this appendix is to give descriptions of

possible tests for determining the physical constants. No- |-

consideration has been given to details of testing technique.
Practical considerations may dictate. changes in the test
procedures described or the. quantities to be measured.
These changes, however, willnot beof fundamentalimportance.

Test for D, and u,—The flexural stiffness D, can be de-
termined by cutting a beam from the plate in the z—direction
and loading it as shown in figure 3. The supports and load-

ing should be such as to make for minimum interference with .

the anticlastic curvature. The middle section is subjectéd
only to & pure moment Pd; the curvature %i:: in this part

can be determined from deflection or strain-gage measure-
ments, and the flexural stiffness is given by equation (1):

M, Pd o
D=—gm=""ow (A
or: Oux? T

where b is the width_of the beam. If the transverse curva- |

2,
ture %3?: is measured (the beam must be wide enough to

permit sccurate measurement of this curvature), the Pmsson _

ratio g, can be calculated from equratlon 2):

F?)
,‘1,:_%“ SR

Test for Do,.—The transverse shear stiffness Dy, can be
determined by loading the beam with a uniform load as shown

Pl P-
fe—— d —— —— d—
= — x
e —— w0 wemT
-\T_~ ___________
P ' P

F1auRrE 3.—Test to determine Dy and pa.

in ﬁgui‘;é: "The beam at any sta,tion zis .Sllb-j ceted to a known

bendmg moment Af, equal to 3 pé_}x p;I) and a rate of

2¢,

change of transverse shear Sy

equal to —g. The curvature

%—;f along the beam can be determined from deflection meas-~

urements. (Strain-gage measurements on upper and lower
surfaces of beam are inappropriate because curvature due to

-rate of change of shear is not accompanied by stretching of

the surfaces.) The flexural stiffness D, having been previ-
ously determined and the transverse moment 3f, taken to
be zero, equation (92) can be solved for Dg_ to obtain

.aa_Q, - _%9 .

x €

- DQ: az,w_l_]u‘ az + 1 pl_agl_pr’ (A.i)
22T D, 22T Db 2
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L
p (16/in)
= —~ T
\\\ _'f_ -——-_/”._ ,,,,,
pL pL
2 z

F1GURE 4.—Test to determine Dq,.

Tests for Dy, py, and Dy, —The constants Dy, p,, and Dy,
can be determined by tests similar to those already described
but on a beam cut in the y-direction.

Test for D,,.—The twisting stiffness D,; can be determined

by cuiting a rectangular panel from the plate,' two. edges -

parallel to the z-axis and ftwo edges parallel to the y-axis,
placing some reinforcement at .the edges to keep the
boundary cross sections recta_ngular and loading the
panel at the corners as shown in figure 5. This loading is
statically equivalent to a twisting moment Af,, distributed

If the edge reinforce-

ments keep the boundary cross sections rectangular, then
the shear angles v, and v, can be assumed to be zero and

around the edges and equal to 12—3

})

.y / l
/ ¢ Ag——" 77T
s P / ,/’ ,/ .
s 7 |
| /

Fierr 5—Test to determine Ds,.

the plate to be in a condition of pure twist with no @,
or @, loading present. The twist ;:Twy can be caloulated
from the measured corner deflections as

Qw48

dzdy 1L

The stiffness D,, is calculated from the formula that appli&s-

when only M., is acting, namely, equation (5):
21[,, P2 _ PlL

APPENDIX B
DERIVATION OF RELATIONSHIP ;.D,=p,D,

Betiti’s reciprocel theorem (reference 10) can be expressed
as follows: Let two groups of forces be applied to a struc-
ture, each group of forces producing distortions that are
directly proportional to the magnitude of the forces; then
the work of the first group of forces acting through the dis-
placements produced by the second group is equal to the
work of the second group acting through the displacements
produced by the first.

The structure to which this prineiple is apphed is the ele-
ment dx dy of figure 1. Let the first group of forces consist
of the moments A, dy. The distortions produced are the

2
curvatures gz,u: and 5 where from equsations (1) and (2),

du_ M,
o2 D,
and
Pw M,
o+ D.

The second group of forces are the moments A, dx, and the
2,

distortions produced by the group are the curvatures-g%p

and aztf where, from equations (3) and (4), .

D=3y =mjIz=
0xdy
and
o*w A,
2 “D,

The work done by the first group of forces Af; dy in associa-
tion with the curvature y,%’ produced by the second
- ¥ .
group is
—at.dy (i %fz dr)
or

—AM, -jg dx dy

LA

Similarly, the work done by the second group of forces

M, dz in association with the curvature p. -D— £ produced by

M, dx (;LI = dy)

-—M,M,

the first group is

or
a’J: dy

Equeting the expressions for. the two works and eliminating
the common factor — AL M, dz dy give
[ f A _.I-E
¥ xz

from which is obtained equation (8).



APPENDIX C

DERIVATION OF EQUILIBRIUM EQUATIONS AND GENERAL BOUNDARY CONDITIONS BY A VARIATIONAL METHOD

In the body of this paper only free, simply supported, and clamped edges were considered. These types of boundary
conditions are characterized by the condition that the moments and vertical forces at the boundaries acquire no potential
energy as a result of the plate’s deflection. This condition holds by virtue of the fact that either the moments and forces at the
boundaries are zero or the points of application of the nonzero boundary reactions do not move. A more general type of sup-
port, in which neither of these conditions holds, is discussed in the following section.

Potential-energy expression.—For simplicity a rectangular plate with edges z=0,a and y=0,b is considered. The
boundary reactions of the plate consist of distributed bending moments, twisting moments, and vertical forces statically
equivalent to the Iimits of the internal moments and shears as the boundaries are approached. Tho intensities of the reactions
(moment or force per unit edge length) are denoted by A, M., and Q. along those boundaries parallel to the y-axis and
M,, M.,, and G, along those boundaries parallel to the z-axis. (Note that the symbols used for the reactions arc distinguished
from the corresponding symbols for the internal forces by means of bars placed above the symbols.)

The potential energy of a plate the edges of which are other than free, simply supported, or clamped can be written
by adding to equation (28) line integrals representing the potential energy of the reactions. The resulting expression is

vl [ 2 [ (G g T D D [ 2, (- (2 (30 i [ By )T+
o 0 Y R o R
dy— J; ’ [—H,, @—gf)“LH" %’—D%-z)#éuw](:dx ©y

In the last two integrals, representing the potential energy of the boundary shears and moments, (%—Z-}— 1—%) and g%’-—g’-)
Qy

o[- G- )+ (-5 ]

are the rotations parallel to the zz-plene and yz-plane, respectively, of an originally vertical line element in the edge of
the plate. : T : e

Minimization of total potentiel energy.—The conditions that must be satisfied if the total potential energy V of Lhe
system is to be a minimum are now considered. By the calculus of variations (reference 11), minimization of V" requires
the vanishing of the first variation V. The first variation can be evalvated from equation (Ci) as

o Tes(e- - oo (209
IS CR Y KO SHCES Rl =l
o 25 (22— QL) : 25 9?9—1‘)2&) -
DartDu\[2 (30 ]| o L e[S -A0)] — 5 |

25(28_ %) (22— 0=
%J;b J;“ [— 2¢5w+2N, %—%%D—HN, % aai—;/”—i-zN,, (%—1;’9%+2% aai;”—)] dr dy—
[ [-a G+ s (G i)+ Qo v [ [T (=) oo (G- )+ Qe |

Those terms in the above expression that contain derivatives of & %ﬁ——g—;) ) 8 (g—;lu-— g:—v) »and 8w can be integrated by

) +%%:6Q,+%Qa—: sQ,}dxdw

parts so as to reduce the order of the derivatives. The resulting expression for 5V contains surface integrals of the type

ff(. . .)8(%1:—%;) d-;c dy

152 - _ . -
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ffe st
—ff(...)aDidn:dy

The first of these two integrals can be integrated again by parts so as to leave only terms containing v rather than deriva-
tives of 8w. With the aforementioned mtegratmns by parts performed and after consxdemble rearrangement of terms, the
expression for 5V becomes : -

= iZm G-t () e G o )]+
3 (Pl [ -0 ) v Lo G0+
D[ 55 (B 1) oo (B J oM S ey fowdede
LS e G2 I ) [ G -m) 1+
3D [t (5B s (i) [ e } o i de
INRHE ISl Bl Ol | .
3025 (5~ z%) sty (or D) [+ &} 1 Doy de vt
ﬁb{— T )]_' D”—tﬁ”)[axay oy Da)]
2D [aray(aw Q")Jf ‘_,)]+N=$+N“a—“@=}5wlody+
N e G el 1 i G ) L
L 0a[2 G-+ (B-5e) 7o (-5
NG KDﬂ—tﬁ “Narws o= B) itz B-10) -

30| 53 (5 %)Jfaxay(aw B 20 G e =Tt

f { D“ﬂ,“)[az st i G B e (52 .

_Hz "'I:b.t 2;" gg E)y %D ):l_ ”}5 a_‘D—

which can be broken up into

and

“dy+

dz-+

dz
(1}

905385—50——11
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By virtue of equations (12) and (8), the above expression for 8V can be rewritten as
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V= f f [ - +22’;ﬂ§;" oM, <+N, ACA% Y by,-i-zN,, bxby):l sw dx dy+
[ (=% +2%etg, 5Q’dzd v+, 7 (—aﬂ+°§x"+€zy)5@" de dy+

oM, oM, - o =
f ( ay” Nz az"l" Way Qz &wl dy J‘ (ﬂf J’I:) 8 iv'—_Q—;) od?/-!"
dM, bM, -
f (ﬂfsl' sz) 6 < Qo” +f ( V V ay + zy a QY)
¢ _ @_ Qv) ? f ¢ — \ a_w_ Qr
| as—m2) 5 (5 1) | dot |, (=TT 5 (37— 1
In order for 5V as given by the above expression to be zero for all possible values of sw, 8 DQ—‘-, and § gj, the various
integrals must individually be zero. The following differential equations result from equat.ing the surface intl&grals to zero:
*M, . O*M,, , M, O
e i (% AN SRHN, SN
oM,
Q= ‘—'Ww'i' ax - L (Cz)
Q=204 0 -
By virtue of the last two of equations (C2), bgg _oM,, ) (bg;’—%”) in the line integrals can be replaced by @:

and @,, respectively. Egquating the line integrals to zero then gives the following boundary conditions required to irsure
that §V=0:

At =0, - 5
Qz"]" z ax+Nzy a_y--"‘Qg or - sw=0
M=H o o (-gr)-0t (C3)
ow Qu )
M.,=M, -
=M, or by DQ”
At y=0,¢
Qv'l"Nvay'l' 2 a.‘l’,' Q or N 6w=0
— ow @,
M=M s 5,7 )=0
v v (ay E;y) - (64)
_ A g‘l_l)_ Q: —
M,=M, or 3§ >z FQ OJ

Equations (C2) are the differential equations that must be satisfied if the potential energy is to be & minimum. They
will be recognized as the equations of equilibrium, equations (11).

Equations (03) and (C4) are the boundary conditions that must be satisfied if the potential energy is to be a minimum,
The left-hand groups of equations (C3) and (C4) imply that the limiting values of the interna] forces and moments, as the edge
of the plate is approached, must be in equilibrium with certain prescribed forces and moments externally applied at the edge
(the prescribed forces and moments being designated by means of the horizontal bars). The right-hand groups of equations
(C3) and (C4) imply that the dJsplaoements at the edge must have certain prescribed values.

The boundary conditions given by equations (15) to(19) for free, simply supported, and elamped edges parallel to the y-
axis are special cases of equations (C3). For example, the boundary conditions for & simply supported edge (equations (16))

can be obtained from equation (C3) by prescribing the values of w, M., a,nd( -D—) to be zero at the boundaries z=0, a.
i"
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If a plate is elastically supported at the boundaries, the elastic support may sometimes be conveniently thought of as
made up of three rows of closely spaced discrete springs at each edge: a row of deflectional springs, a row of rotational springs,
and a row of torsional springs, having the known stiffnesses per inch ki, %y, and %;, which may vary along the edge. For this
type of support the vertical shear reaction at any point along the edge is proportional to the vertical deflection at that point
and the twisting and bending moment reactions are proportional to the corresponding rotations of an originally vertical line
element in the edge. The boundary conditions for this type of support can be obtained from equations (C3) and (C4) by set-
ting at z=0

0.=Fk 7 — ow_ Q. - . (ow_ @
Q-’-—Illw Hz—_kz o DO; ﬂfz'—l.a (g:: T:’
at r=a

Qz'—' _klw J}I: Aﬂ (ax Dqs) A_-[:' _Aa ay Da’y)
ab y=0

Yol -— s

T G

Hi

at y=b

G=—kw  T=h(3-p- Q" o —ia (P

The signs in the above boundary conditions follow as a result of the directions assumed for positive shears and moments.

APPENDIX D
DERIVATION OF EQUATION (27) FOR THE POTENTIAL ENERGY OF THE EXTERNAL FORCES
A rectangular plate the edges of which are z=0,¢ and - Ay

y=0,b is considered (fig. 6). The boundary conditions as-
sumed are the usual conditions corresponding to zero work _
by the reactions; that is, each edge is either free, simply z
supported, or clamped.

The horizontal loads N;, N;, and N,, are assumed first to 1
be applied at the boundaries with no lateral load. As a
result the middle plane (and all horizontal planes) of the plate Ny
stretches; thus, the constant stretching energy discussed T_‘*
previously in connection with the strain energy of the plate a
is produced, and slight shifts in the points of application of
the edge forces N, N,, and N,, are caused. These new N S S SR SR R
positions of the points of application are used as the arbitrary
fixed reference points in any future measurements of the '
potential energy of the horizontal edge forces.

If the lateral load ¢ is now applied, the middle surface
acquires the displacements w(z,y) in the z-direction, u(x,y) )
in the z-direction, and »(z,y) in the y-direction. As a result 4
of these displacements, the lateral load acquires the potential Fievae 6.—Rectangular plate with horizontal forces applied to boundaries.
energy

b (a By use of the formula for integration by parts, expression
_f f qw dz dy (D1) (D2) for the potential energy of the edge forces can be re-

written in terms of the interior forces and displacements as
and the edge forces acquire the potential energy

[ [ c - : +A +N + )] dr dy'—
’ ’ ’ ° ° N, aN
®2) N f w (O 2 g ay—
The moments and vertical forces at the boundaries do no work J‘ J‘ 2 N, dx a D3 .
and therefore acquire no potential energy during deflection.
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In the development of the differential equations and in this
section the middle-surface stresses N,, N,, and N;, are as-
sumed to remain unchanged in the course of the plate’s
deflection. Equations (10) for equilibrium of horizontal
force, consequently, remain satisfied at all times, and, there-
fore, the last two integrals of expression (D3} vanish. Further-
more, the assumption that the middle-surface stresses remain
unchanged implies that no stretching of the middle surface
during deflection occurs. In order to prevent such strefch-

ing the horizontal displacements u and v can be shown
(p. 818, reference &) to be related to the vertical displace-.

ments w as follows:

The first and only rema.mmg mtegral of expressmn (D3)
therefore becomes . -
ow Qw

2o Jo [ Ga)+m (Bp) +2va 255

Addition of expressions (D1) and (D4) gives, as the total
potential energy of the external forces,

V=i f f [—2qw+N,<%—f)2+N,<%j)z+an?Twg;’ c:) d;);
5

dedy (D4)

Although the derivation was carried out for the special .

case of a rectangular plate, equation (D5) also applies to a

plate of any shape in which the middle-surface strosses
remain unchanged during deflection. Equation (D5) is
identical with cquation (27).
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